Telegram Group & Telegram Channel
📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/br/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик



tg-me.com/dsproglib/6430
Create:
Last Update:

📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/br/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6430

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from br


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA